Bourgain’s Theorem via Padded Decompositions'

* Bourgain’s Theorem. In the last lecture, we saw how the generalized/non-uniform sparsest cut can be
solved if we could find metric embeddings of a general metric into £, with low distortion. In particu-
lar, the following theorem of Bourgain (stylized to capture distortion with respect to S) immediately
implies a O(log k)-approximation for the general sparsest cut problem.

Theorem 1 (Bourgain’s Theorem, the Terminal Version). Given any metric space (V, d) and a set
S C V of size at most k, there is a mapping ¢ : V — RO(0e* k) gych that with high probability,
we have that for any pair of vertices v and v, ||¢)(u) —1(v)||1 < d(u,v) and for any pair u,v € S,

d(u,v) < O(log k)[[¢(u) — (v)||1.

* In this note we give a sketch of a proof. In particular, we focus on the case of S = V/, that is the case
of all pairs. Furthermore, we only prove an “expectation” result rather than a “with high probability”
result. More precisely, we describe a randomized algorithm which produces a ¢ : V' — R" such
that for any two points u and v we have ||¢(u) — ¢(v)|; > d(u,v) but Expl||¢p(u) — ¢(v)]];] <
O(logn) - d(u,v). The “with high probability” statement can be obtained by “repeating, averaging,
and concatenating” and applying standard deviation inequalities like the Chernoff bound. We leave
this as an exercise. The 1 in the theorem is obtained by defining ¢)(u) := % for a sufficiently
large C.

We describe a proof which uses the random permutation idea that we saw in the randomized multicut
algorithm. The key definition is that of padded decompositions.

Definition 1. Given a metric d over V, a (3, A)-padded decomposition of (V, d) is a distribution
over partitions IT := (V, ..., Vr) with the following two properties

a. The (weak) diameter of each V; € Il is at most A.
b. For any vertex u and radius 7, Pry[B(u, r) is shattered by I1) < B(u) - &

Here 3 : V' — R is a function mapping a non-negative real to u, and could depend on A. The
weak diameter of a subset S is max,, yes d(u,v). The set B(u,r) := {v : d(u,v) < r} is the
ball of radius 7 around u, and it is shattered by a partition 11 if at least two parts II; and II; have
non-trivial intersection with the ball. Finally, a padded decomposition distribution is said to be
efficient if it can be efficiently sampled from.

* Padded Decompositions and Embedding into (;. We now describe how padded decompositions
imply embeddings in a fairly natural way. Let D := max,, ,cv d(u, v). Our (randomized) mapping ¢
will be a concatenation of these [log, D] different ¢,’s.
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1: procedure RANDOMIZED EMBEDDING(V, d):
2: for t = 0 to [logy D] do: > D := max, vev d(u,v).

3: Sample TI; := (Vi,...,Vy,) from a (8, 2!)-padded decomposition distribution.
B¢ ’s will be defined later
4: Define ¢;(u) as a d;-dimensional vector corresponding to the different parts:

2t ifueV;

0 otherwise

¢e(u)[i] = {

A

> If u and v are in different parts of Iy, then || (u) — ¢¢(v)||, = 2811, else itis 0

Let ¢ be a concatenation of these [log, D] different ¢; vectors. So, the dimension of ¢

is Zt dt.

2

Claim 1. For any two points « and v and any ¢, Exp|||¢:(u) — ¢c(v)|[1] < Be(u) - 8d(u,v).
Furthermore, if t < logy d(u,v), then ||dy(u) — ¢¢(v)||1 = 2+ with probability 1.

Proof. w and v are in different parts of II; is equivalent to the event that the ball B(u,d(u,v)) is
shattered by II;. By the definition of padded decompositions, the probability of this is at most
43;(u)d(u,v)/2t. Therefore, Exp[||¢:(u) — ¢¢(v)|]1] < %ﬁ“) - 21%1 and thus the first assertion
of the claim follows. Furthermore, if ¢ < log, d(u,v) implying d(u,v) > 2!, then from the fact
that the diameter of every part is < 2 one gets that u and v cannot be in the same part. And so,
|[¢e(u) — ¢¢(v)|]1 = 28! with probability 1. O

By the second assertion in Claim 1, we get

UOgQ d(u,v)J
Forany u,v, |lg(u) —¢()[i> Y 2! >d(u,v) M
t=0
By the first assertion in Claim 1, we get

logy D

For any u,v, Expl||¢(u) — ¢(v)[[1] < 8d(u,v) > Bi(u) 2)

t=0

In sum, we get an embedding of d into ¢; with distortion depending on the 5-parameter of the padded
decomposition. In the next bullet point, we show how to obtain a padded decomposition with the
following parameters.

Theorem 2. For any metric space (V, d) and parameter ¢, there exists a (3, 2) padded decomp-

isition with B( t)|
B(u,2

<2In(| —1—2-—

Bulu) < n<|B<u,2t—3>|>



If we substitute this in (2), we get

logy D t
Forany u, 0. Bxplo(u) — (o)l < safu.0) 3 o (520 )
t=0 ’

Now note that the summations telescope to < 24Inn - d(u,v). And this completes the proof sketch
of Theorem 1.

Padded Decomposition Distributions. We now describe a randomized algorithm which generates

samples from a (3;(u), 2!)-padded decomposition with 8;(u) < 21n (%)

1: procedure PADDED DECOMPOSTION(%):> Return a padded decomposition as asserted in The-

orem 2
2: Sample a random permutation ¢ of the points in V.
3. Sample R € [2¢72, 2!=1] uniformly at random.

4: Define V; := {v : d(i,v) < R} \ UjSai V.

It is clear that, by design, the diameter of every V; is at most 2R < 2¢. What is more interesting is to
prove that for any u € V and any r, the probability B(u,r) is shattered is at most ;(u) - é—f. Let B
denote this ball B(u,r). First, observe that if » > 2!=3, then %—f > 1 and so the shattering claim holds
vacuously. Therefore, henceforth we assume r < 2t=3,

Let us consider a vertex 4 such that Vj is the first in o-order to shatter B(u,r). For this to occur,
we must have d(u,i) —r < R and R < d(u,i) + r: the former since V; intersects B(u,r) and
the latter since it doesn’t contain all of it. Since R € [2!72,2!71], we get that i must lie in the set
X := B(u,2""! +7) \ B(u,2'=2 — r). Furthermore, in the random permutation ¢, i must appear
before any vertex j € B(u, 22 — r) otherwise i won’t be the first vertex to shatter the ball (either
someone else would have shattered, or j would’ve gobbled the whole ball B(u,r).) Finally, note that
if ¢ can non-trivially intersect B, then any j € X with d(j, B) < d(i, B) can non-trivially intersect
B. Therefore, if ¢ were the first in o to shatter B, it better be that all j € X with d(j, B) < d(i, B)
come dfter v in o.

Pr[B(u,r) shattered] = gr[ﬂi € X : Vj is the first in o to shatter B(u, )]
N
< Z Pr[V; is the first in o to shatter B(u, )]
ieX fto
< Z R1@31['[112 € [d(u,i) £ r] and &]
Nea
ieX

where &; is the event that all vertices j € B(u, 2= + ) <, i satisfy (a) j ¢ B(u,2!"2 — r) and (b)
d(j, B) > d(i, B). As explained above, if & doesn’t occur then i cannot be the first vertex to shatter
B. Note that &; is independent of R € [d(u, i) & r|. And therefore,

Pr[B(u,r) shattered] < Z P;r[R € [d(u,i) £7]-Pr[&] < -, Z Pr[&]
i€X i€X



If we sort the points in B(u,2'~! + r) in increasing order of distance from u, then Pr[&;] is 1, and
i ranges precisely from |B(u, 2'=2 — r)| to | B(u, 2" 4 r)]| since that is where the points in X lie.
This harmonic sum is indeed bounded by

(ot 1) = (o)

since 7 < 2¢73. This ends the sketch of the proof of Theorem 2.

Notes

Bourgain’s theorem on metric embeddings is from the paper [2]. The terminal version as stated in Theorem 1
is first stated in the paper [5] by Linial, London, and Rabinovich, and also in the paper [1] by Aumann and
Rabani. The proof above is inspired from the paper [4] by Fakcharoenphol, Rao, and Talwar, which itself is
inspired from the paper [3] by Calinescu, Karloff, and Rabani.
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