Bourgain's Theorem via Padded Decompositions ${ }^{1}$

- Bourgain's Theorem. In the last lecture, we saw how the generalized/non-uniform sparsest cut can be solved if we could find metric embeddings of a general metric into \mathcal{L}_{1} with low distortion. In particular, the following theorem of Bourgain (stylized to capture distortion with respect to S) immediately implies a $O(\log k)$-approximation for the general sparsest cut problem.

Theorem 1 (Bourgain's Theorem, the Terminal Version). Given any metric space (V, d) and a set $S \subseteq V$ of size at most k, there is a mapping $\psi: V \rightarrow \mathbb{R}^{O\left(\log ^{2} k\right)}$ such that with high probability, we have that for any pair of vertices u and $v,\|\psi(u)-\psi(v)\|_{1} \leq d(u, v)$ and for any pair $u, v \in S$, $d(u, v) \leq O(\log k)\|\psi(u)-\psi(v)\|_{1}$.

- In this note we give a sketch of a proof. In particular, we focus on the case of $S=V$, that is the case of all pairs. Furthermore, we only prove an "expectation" result rather than a "with high probability" result. More precisely, we describe a randomized algorithm which produces a $\phi: V \rightarrow \mathbb{R}^{h}$ such that for any two points u and v we have $\|\phi(u)-\phi(v)\|_{1} \geq d(u, v)$ but $\operatorname{Exp}\left[\|\phi(u)-\phi(v)\|_{1}\right] \leq$ $O(\log n) \cdot d(u, v)$. The "with high probability" statement can be obtained by "repeating, averaging, and concatenating" and applying standard deviation inequalities like the Chernoff bound. We leave this as an exercise. The ψ in the theorem is obtained by defining $\psi(u):=\frac{\phi(u)}{C \log n}$ for a sufficiently large C.
We describe a proof which uses the random permutation idea that we saw in the randomized multicut algorithm. The key definition is that of padded decompositions.

Definition 1. Given a metric d over V, a (β, Δ)-padded decomposition of (V, d) is a distribution over partitions $\Pi:=\left(V_{1}, \ldots, V_{T}\right)$ with the following two properties
a. The (weak) diameter of each $V_{i} \in \Pi$ is at most Δ.
b. For any vertex u and radius $r, \operatorname{Pr}_{\Pi}[B(u, r)$ is shattered by $\Pi] \leq \beta(u) \cdot \frac{4 r}{\Delta}$

Here $\beta: V \rightarrow \mathbb{R}_{\geq 0}$ is a function mapping a non-negative real to u, and could depend on Δ. The weak diameter of a subset S is $\max _{u, v \in S} d(u, v)$. The set $B(u, r):=\{v: d(u, v) \leq r\}$ is the ball of radius r around u, and it is shattered by a partition Π if at least two parts Π_{i} and Π_{j} have non-trivial intersection with the ball. Finally, a padded decomposition distribution is said to be efficient if it can be efficiently sampled from.

- Padded Decompositions and Embedding into ℓ_{1}. We now describe how padded decompositions imply embeddings in a fairly natural way. Let $D:=\max _{u, v \in V} d(u, v)$. Our (randomized) mapping ϕ will be a concatenation of these $\left\lceil\log _{2} D\right\rceil$ different ϕ_{t} 's.

[^0]```
procedure Randomized Embedding \((V, d)\) :
 for \(t=0\) to \(\left\lceil\log _{2} D\right\rceil\) do: \(\triangleright D:=\max _{u, v \in V} d(u, v)\).
 Sample \(\Pi_{t}:=\left(V_{1}, \ldots, V_{d_{t}}\right)\) from a \(\left(\beta_{t}, 2^{t}\right)\)-padded decomposition distribution. \(\triangleright\)
\(\beta_{t}\) 's will be defined later
 Define \(\phi_{t}(u)\) as a \(d_{t}\)-dimensional vector corresponding to the different parts:
\(\phi_{t}(u)[i]= \begin{cases}2^{t} & \text { if } u \in V_{i} \\ 0 & \text { otherwise }\end{cases}\)
 \(\triangleright\) If \(u\) and \(v\) are in different parts of \(\Pi_{t}\), then \(\left\|\phi_{t}(u)-\phi_{t}(v)\right\|_{1}=2^{t+1}\), else it is 0
 Let \(\phi\) be a concatenation of these \(\left\lceil\log _{2} D\right\rceil\) different \(\phi_{t}\) vectors. So, the dimension of \(\phi\)
is \(\sum_{t} d_{t}\).
```

Claim 1. For any two points $u$ and $v$ and any $t, \operatorname{Exp}\left[\left\|\phi_{t}(u)-\phi_{t}(v)\right\|_{1}\right] \leq \beta_{t}(u) \cdot 8 d(u, v)$. Furthermore, if $t<\log _{2} d(u, v)$, then $\left\|\phi_{t}(u)-\phi_{t}(v)\right\|_{1}=2^{t+1}$ with probability 1 .

Proof. $u$ and $v$ are in different parts of $\Pi_{t}$ is equivalent to the event that the ball $B(u, d(u, v))$ is shattered by $\Pi_{t}$. By the definition of padded decompositions, the probability of this is at most $4 \beta_{t}(u) d(u, v) / 2^{t}$. Therefore, $\operatorname{Exp}\left[\left\|\phi_{t}(u)-\phi_{t}(v)\right\|_{1}\right] \leq \frac{4 \beta_{t}(u)}{2^{t}} \cdot 2^{t+1}$, and thus the first assertion of the claim follows. Furthermore, if $t<\log _{2} d(u, v)$ implying $d(u, v)>2^{t}$, then from the fact that the diameter of every part is $\leq 2^{t}$ one gets that $u$ and $v$ cannot be in the same part. And so, $\left\|\phi_{t}(u)-\phi_{t}(v)\right\|_{1}=2^{t+1}$ with probability 1.

By the second assertion in Claim 1, we get

$$
\begin{equation*}
\text { For any } u, v,\|\phi(u)-\phi(v)\|_{1} \geq \sum_{t=0}^{\left\lfloor\log _{2} d(u, v)\right\rfloor} 2^{t+1} \geq d(u, v) \tag{1}
\end{equation*}
$$

By the first assertion in Claim 1, we get

$$
\begin{equation*}
\text { For any } u, v, \quad \operatorname{Exp}\left[\|\phi(u)-\phi(v)\|_{1}\right] \leq 8 d(u, v) \sum_{t=0}^{\log _{2} D} \beta_{t}(u) \tag{2}
\end{equation*}
$$

In sum, we get an embedding of $d$ into $\ell_{1}$ with distortion depending on the $\beta$-parameter of the padded decomposition. In the next bullet point, we show how to obtain a padded decomposition with the following parameters.

Theorem 2. For any metric space $(V, d)$ and parameter $t$, there exists a $\left(\beta_{t}, 2^{t}\right)$ padded decompisition with

$$
\beta_{t}(u) \leq 2 \ln \left(\frac{\left|B\left(u, 2^{t}\right)\right|}{\left|B\left(u, 2^{t-3}\right)\right|}\right)
$$

If we substitute this in (2), we get

$$
\text { For any } u, v, \quad \operatorname{Exp}\left[\|\phi(u)-\phi(v)\|_{1}\right] \leq 8 d(u, v) \sum_{t=0}^{\log _{2} D} \ln \left(\frac{\left|B\left(u, 2^{t}\right)\right|}{\left|B\left(u, 2^{t-3}\right)\right|}\right)
$$

Now note that the summations telescope to $\leq 24 \ln n \cdot d(u, v)$. And this completes the proof sketch of Theorem 1.

- Padded Decomposition Distributions. We now describe a randomized algorithm which generates samples from a $\left(\beta_{t}(u), 2^{t}\right)$-padded decomposition with $\beta_{t}(u) \leq 2 \ln \left(\frac{\left|B\left(u, 2^{t}\right)\right|}{\left|B\left(u, 2^{t-3}\right)\right|}\right)$.

```
procedure PADDED DECOMPOSTION(t):\triangleright Return a padded decomposition as asserted in The-
orem 2
```

Sample a random permutation $\sigma$ of the points in $V$.
Sample $R \in\left[2^{t-2}, 2^{t-1}\right]$ uniformly at random.
Define $V_{i}:=\{v: d(i, v) \leq R\} \backslash \bigcup_{j \leq_{\sigma} i} V_{j}$.

It is clear that, by design, the diameter of every $V_{i}$ is at most $2 R \leq 2^{t}$. What is more interesting is to prove that for any $u \in V$ and any $r$, the probability $B(u, r)$ is shattered is at most $\beta_{t}(u) \cdot \frac{4 r}{2^{t}}$. Let $B$ denote this ball $B(u, r)$. First, observe that if $r>2^{t-3}$, then $\frac{4 r}{2^{t}}>1$ and so the shattering claim holds vacuously. Therefore, henceforth we assume $r \leq 2^{t-3}$.
Let us consider a vertex $i$ such that $V_{i}$ is the first in $\sigma$-order to shatter $B(u, r)$. For this to occur, we must have $d(u, i)-r \leq R$ and $R \leq d(u, i)+r$ : the former since $V_{i}$ intersects $B(u, r)$ and the latter since it doesn't contain all of it. Since $R \in\left[2^{t-2}, 2^{t-1}\right]$, we get that $i$ must lie in the set $X:=B\left(u, 2^{t-1}+r\right) \backslash B\left(u, 2^{t-2}-r\right)$. Furthermore, in the random permutation $\sigma, i$ must appear before any vertex $j \in B\left(u, 2^{t-2}-r\right)$ otherwise $i$ won't be the first vertex to shatter the ball (either someone else would have shattered, or $j$ would've gobbled the whole ball $B(u, r)$.) Finally, note that if $i$ can non-trivially intersect $B$, then any $j \in X$ with $d(j, B) \leq d(i, B)$ can non-trivially intersect $B$. Therefore, if $i$ were the first in $\sigma$ to shatter $B$, it better be that all $j \in X$ with $d(j, B) \leq d(i, B)$ come after $i$ in $\sigma$.

$$
\begin{aligned}
\operatorname{Pr}[B(u, r) \text { shattered }] & =\underset{R, \sigma}{\operatorname{Pr}}\left[\exists i \in X: V_{i} \text { is the first in } \sigma \text { to shatter } B(u, r)\right] \\
& \leq \sum_{i \in X} \underset{R, \sigma}{\operatorname{Pr}}\left[V_{i} \text { is the first in } \sigma \text { to shatter } B(u, r)\right] \\
& \leq \sum_{i \in X} \mathbf{P r}_{R, \sigma}\left[R \in[d(u, i) \pm r] \text { and } \mathcal{E}_{i}\right]
\end{aligned}
$$

where $\mathcal{E}_{i}$ is the event that all vertices $j \in B\left(u, 2^{t-1}+r\right) \leq_{\sigma} i$ satisfy (a) $j \notin B\left(u, 2^{t-2}-r\right)$ and (b) $d(j, B)>d(i, B)$. As explained above, if $\mathcal{E}_{i}$ doesn't occur then $i$ cannot be the first vertex to shatter $B$. Note that $\mathcal{E}_{i}$ is independent of $R \in[d(u, i) \pm r]$. And therefore,

$$
\operatorname{Pr}[B(u, r) \text { shattered }] \leq \sum_{i \in X} \operatorname{Pr}_{R}\left[R \in[d(u, i) \pm r] \cdot \operatorname{Pr}\left[\mathcal{E}_{i}\right] \leq \frac{4 r}{2^{t}} \cdot \sum_{i \in X} \operatorname{Pr}\left[\mathcal{E}_{i}\right]\right.
$$

If we sort the points in $B\left(u, 2^{t-1}+r\right)$ in increasing order of distance from $u$, then $\operatorname{Pr}\left[\mathcal{E}_{i}\right]$ is $\frac{1}{i}$, and $i$ ranges precisely from $\left|B\left(u, 2^{t-2}-r\right)\right|$ to $\left|B\left(u, 2^{t+1}+r\right)\right|$ since that is where the points in $X$ lie. This harmonic sum is indeed bounded by

$$
\ln \left(\frac{\left|B\left(u, 2^{t-1}+r\right)\right|}{\left|B\left(u, 2^{t-2}-r\right)\right|}\right) \leq \ln \left(\frac{\left|B\left(u, 2^{t}\right)\right|}{\left|B\left(u, 2^{t-3}\right)\right|}\right)
$$

since $r \leq 2^{t-3}$. This ends the sketch of the proof of Theorem 2 .

## Notes

Bourgain's theorem on metric embeddings is from the paper [2]. The terminal version as stated in Theorem 1 is first stated in the paper [5] by Linial, London, and Rabinovich, and also in the paper [1] by Aumann and Rabani. The proof above is inspired from the paper [4] by Fakcharoenphol, Rao, and Talwar, which itself is inspired from the paper [3] by Calinescu, Karloff, and Rabani.

## References

[1] Y. Aumann and Y. Rabani. An $O(\log k)$ approximate min-cut max-flow theorem and approximation algorithm. SIAM Journal on Computing (SICOMP), 27(1):291-301, 1998. Prelim. Version, in IPCO 1995.
[2] J. Bourgain. On Lipschitz embedding of finite metric spaces in Hilbert space. Israel Journal of Mathematics, 52(1):46-52, 1985.
[3] G. Calinescu, H. Karloff, and Y. Rabani. An Improved Approximation Algorithm for multiway cut. J. Comput. System Sci., 60, 2000.
[4] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary metrics by tree metrics. In Proc., ACM Symposium on Theory of Computing (STOC), pages 448-455, 2003.
[5] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of its algorithmic applications. Combinatorica, 15(2):215-246, 1995. Prelim. Version. in FOCS 1994.


[^0]:    ${ }^{1}$ Lecture notes by Deeparnab Chakrabarty. Last modified: 18th Mar, 2022
    These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at deeparnab@dartmouth.edu. Highly appreciated!

